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a b s t r a c t

Biotic indices are widely used in monitoring the health status of various ecosystems. The choice of the
best index is generally done qualitatively depending on a variety of aspects including cost and time. ROC
(Receiver Operating Characteristic) methodology constitutes a valuable tool to compare objectively the
diagnostic capabilities of different tests in addition to obtain decision thresholds. In this manuscript, ROC
eywords:
OC methodology
iotic index
MWP
PT

methodology is described and implemented for the first time in the context of stream bioassessment
through benthic macroinvertebrates. Cut-off values that distinguish impaired from healthy sites are sug-
gested. A new index called IBY-4 is also developed. IBY-4 accounts for the occurrence of Megaloptera,
Plecoptera, Trichoptera and Elmidae in a target site and may achieve the best general performance in the
study region concerning to Andean Tropical streams.
ungas
enthic macroinvertebrates

. Introduction

Freshwater ecosystems are one of the most endangered of the
orld. Moreover, the natural services they provide (mainly water)

nd the biodiversity they support are also threatened (UNESCO,
009). Worldwide anthropic disturbances include channelization
f stream bottom, dams, removal of riparian trees, wastewaters
llocation, replacement of native forests by grasslands along the
atershed and invasive species. Habitat transformation followed

y biodiversity loss constitutes a consequence associated to them.
hus, the frequent supervision of the ecosystem integrity rep-
esents a priority task for water resource management. In this
ontext, biotic indices based on aquatic macroinvertebrates have
een developed as one type of diagnostic test of ecosystem integrity
for review see Bonada et al., 2006). The main premise underlying
iotic indices development is that an assessment of stream integrity
and water quality) could be achieved by evaluating the community
tructure.

Worldwide experience has demonstrated that the most use-
ul biological assessment methods for freshwater monitoring are
ased on benthic macroinvertebrates (Sivaramakrishnan, 2000).
n extensive literature on this topic is available (e.g., Rosenberg

nd Resh, 1993; Chessman and McEvoy, 1998; Reynoldson et al.,
001; Resh, 2008). Alleged reasons are ubiquity, susceptibility to
isturbances, large number of species that offers a spectrum of
esponses to perturbations, accessibility, inexpensive equipment
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for sampling, etc. (Resh, 1995). This monitoring strategy has been
also incorporated to South America: e.g. Argentina (Domínguez and
Fernández, 1998; Rodrigues Capítulo et al., 2001), Brasil (Junqueira
and Campos, 1998), Chile (Figueroa et al., 2003, 2007), Colombia
(Roldán, 1999) but with much effort devoted to adapt tolerance val-
ues or suggest the most suitable biotic index for each region (Prat
et al., 2009). Fernández et al. (2002) and Von Ellenrieder (2007)
represent the latest contributions studying relationships between
macrobenthos and environmental variables associated to basin dis-
turbance in the study area.

Implementation of control and protection policies should be
based on indices of proven reliability. Such reliability refers to the
ability of the index to detect the correct status about the health
of the assessed environment and has been commonly evaluated
qualitatively (e.g. Bonada et al., 2006). Nonetheless, studies that
compare the performance of different biotic indices providing a sta-
tistical significance of their results are much rarer (Barbour et al.,
1996; Murtaugh, 1996; Hale et al., 2004; Hale and Heltshe, 2008;
Sánchez-Montoya et al., 2010).

The accuracy of a biotic index can be calculated by comparing
the results of the test to the true health status of the ecosystem.
True status has to be determined with reference standard pro-
cedures (chemical analyses, analysis of disturbance in the basin,
etc.). To compare different biotic indices is necessary to know
the following accuracy ratios: sensitivity (number of true positive
predictions vs. number of actually positive cases) and specificity

(number of true negative predictions vs. number of actually neg-
ative cases). The Receiver Operating Characteristic (ROC) curve is
a plot of sensitivity (y coordinate) versus 1 − specificity (x coordi-
nate). ROC curves are graphic tools especially suitable for evaluating
diagnostic tests because they capture the trade-off between sen-
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Table 1
Two-by-two confusion matrix.

Stream actual status
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chance of predicting a positive result. A cut point at each value of H
is established. Thus, for example, the predictions under the first cri-
terion (i.e. perturbed if H < 1, otherwise non-perturbed) yield 0 for
the sensitivity and 1 for the specificity, that is the point (0, 0) in the

Table 2
Hypothetical data illustrating ROC analysis. Streams actually perturbed are coded
1, otherwise they are coded 0. Values are given for an imaginary diagnostic metric
called H. The random H metric is obtained via randomization of vector H. ROC analy-
sis is performed below the table. For each decision threshold, 1 − specificity (1 − Spe)
and sensitivity (Sen) values have been calculated. The performance of each metric
can be evaluated through the respective ROC curves in Fig. 1.

Item (status) H metric Random H
Value Value

Raw data Stream A (1) 1 10
Stream B (1) 3 14
Stream C (1) 5 1
Stream D (1) 7 8
Stream E (1) 10 5
Stream F (0) 8 3
Stream G (0) 9 12
Stream H (0) 12 9
Stream I (0) 14 16
Stream J (0) 16 7

Cut point H metric Random H
(1 − Spe)/Sen (1 − Spe)/Sen

ROC analysis <1 0/0 0/0
≤1 0/0.2 0/0.2
≤3 0/0.4 0.2/0.2
≤5 0/0.6 0.2/0.4
≤7 0/0.8 0.4/0.4
≤8 0.2/0.8 0.4/0.6
Stream predicted status Perturbed (+)
Healthy (−)

itivity and specificity over the range of test values (Lasko et al.,
005).

ROC curves have been applied to many disciplines, including
edicine (e.g. Lusted, 1971), industrial quality control (Drury and

ox, 1975) and estuarine ecology (Hale et al., 2004; Hale and
eltshe, 2008). To our knowledge, this work represents the first
ontribution to the use of ROC methodology in the context of fresh-
ater bioassessment through benthic macroinvertebrates.

The general aim of this article is to introduce basic concepts
f the ROC methodology to an audience interested on freshwater
iomonitoring and to emphasize its role in the appraisal of biolog-

cal index performance. Specific objectives include the use of ROC
urves (1) to compare the diagnostic capabilities of some widely
sed metrics in addition to a new index (IBY-4) applied on a large
ata set from Tropical Andes streams; (2) to identify thresholds
f decision for those indices in order to be used in biomonitoring
rograms; and (3) to analyze the response of different indices to

ncreasing levels of perturbation.

. Materials and methods

.1. ROC methodology

A stream is considered perturbed if it receives some anthropic
mpact directly on it (e.g., water chemistry or channel shifts) or on
urrounding areas (e.g., riparian or watershed area denudation) to
he extent of impairing the stream capability to hold a biodiversity
therwise different at the pristine condition. Basically, biomoni-
oring aims to determine if a given stream should be considered
erturbed or not. This corresponds to a classification problem using
nly two classes. Formally, each instance (stream) is mapped to
ne element of the set {+, −} of positive (perturbed) and negative
non-perturbed) class labels (Fawcett, 2005). Classifiers are used
o predict the membership of items to one of the two alternative
lasses. Biological metrics are classifiers that may surrogate expen-
ive and time consuming procedures to assess the stream quality
Cullen, 1990). However, the outputs of these metrics are not single
cores, they span over a range of values to which different thresh-
lds may be applied to predict class membership. We are interested
n achieving good predictions, i.e. the predicted class should agree

ith the actual class of stream perturbation.
Sensitivity and specificity. In dealing with predictive tasks, there

re four possible outcomes: (1) true positive, when a perturbed
tream is correctly classified; (2) false positive, when a healthy
tream is considered an altered one; (3) true negative, when a pre-
erved stream is assigned to the right class; (4) false negative, when
damaged stream is wrongly mapped to the non-perturbed class.
he counts of correct yes-forecasts and false alarms can be arranged
nto a two-by-two confusion matrix (Table 1).

We will focus on two ratios, viz. the True Positive Rate (TPR)
nd the False Positive Rate (FPR). TPR denotes the proportion of
erturbed streams correctly predicted: TPR = TP/(TP + FN); whereas

PR concerns to the proportion of negatives incorrectly classified:
PR = FP/(FP + TN). Sensitivity is equivalent to the TPR score, while
pecificity refers to 1 − FPR, that is the proportion of negatives cor-
ectly classified: 1 − FPR = TN/(FP + TN). Sensitivity and specificity
re the basic measures of accuracy of a diagnostic test (Obuchowski,
Perturbed (+) Healthy (−)

True positive (TP) False positive (FP)
False negative (FN) True negative (TN)

2003); for our purposes, they describe the ability of a biological
metric to correctly diagnose perturbation when perturbation is
actually present and to correctly dismiss perturbation when it is
truly absent.

ROC plot. Biological metrics yield a range of values rather than
a dichotomous response. One strategy for obtaining binary pre-
dictions is to select a cut point and record the cases lying above
and below that point. Nevertheless, the choice of a unique cut
point is an arbitrary procedure that blurs the information contained
in the data. As the cut point changes, specificity and sensitiv-
ity shifts (Obuchowski, 2003). A fruitful alternative is to explore
the entire range of values, calculating for each possible cut point
the respective sensitivity/specificity pair. The graphical display of
all those pairs connected by segment lines, with sensitivity and
1 − specificity plotted on the y and x axes respectively, is known
as the empirical ROC curve. Table 2 shows a workable example
with the scores provided by a hypothetical metric H applied on
10 streams (5 perturbed and 5 non-perturbed) to illustrate how to
construct the respective ROC curve (Fig. 1a). It should be considered
that the true health status (gold standard) has to be fixed in a first
stage of analysis and the diagnostic performance of the test has to
be evaluated afterwards.

Observe that the lower the score of H metric, the higher the
≤9 0.4/0.8 0.6/0.6
≤10 0.4/1 0.6/0.8
≤12 0.6/1 0.8/0.8
≤14 0.8/1 0.8/1
≤16 1/1 1/1
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ig. 1. Performance of hypothetical diagnostic measures visualized via ROC curves
ector. Sensitivity and specificity are expressed as percentages. Note that 100 − sp
hese plots.

OC space, indicating us that no positive item could be recognized,
hereas all the negatives were correctly classified. A reversed

esult is obtained when the criterion becomes H ≤ 16, producing
ere the point (1, 1) in the ROC space. This last strategy represents

ssuing unconditionally a positive classification where the true pos-
tive rate is maximized and all the negatives are neglected. As we

ove along the sorted values of the classifier variable, specificity
nd sensitivity experience opposite trends. Thus, the ROC graph
epicts the tradeoffs between sensitivity and specificity, being an
xcellent tool for visualizing the performance of a diagnostic test.
ince the scales of the ROC curve are the TPR and the FPR, this
urve does not depend on the scale of the classification metric. This
nables us to do visual comparisons among different metrics on a
ommon set of scales (Obuchowski, 2003).

A completely randomized classifier is expected to fall along the
hance diagonal associated to the ROC space. To illustrate this, see
ig. 1b where the ROC curve is displayed after random assorting of
he imaginary H values (see Table 2). On the contrary, in case of per-
ect segregation between the two distributions, the ROC plot passes
hrough the point (0, 1) indicating maximal sensitivity and speci-
city. Therefore, the closer the ROC plot is to the upper left corner,
he higher the overall accuracy of the test (Zweig and Campbell,
993).

Lastly, limnologists are frequently queried to give both reliable
nd fast judgments about the stream quality upon requests of gov-
rnmental or private institutions. For those situations, it would be
esirable to account for a standardized protocol, not only to sample
he biological community, but also to implement more adequate

etrics and to choose the less conflictive threshold decision value.
hese last two points can be solved through ROC analysis as we
xplain in the following procedures.

Optimal cut point. For the subsequent real data here analyzed,
e assume that sensitivity and specificity are equally important. In

his way, the threshold decision was based upon the nearest point
o the upper left corner of the ROC plot. If similar performances
re obtained, the cut-off with maximal sensitivity has priority. This
riterion is founded on the fact that the best positioned point in
he ROC space is (0, 1); so the closer a point is to this corner, the

igher its performance. The nearest point to the upper left-hand
orner will result in the lowest number of overall errors: FN + FP
Streiner and Cairney, 2007). Returning to the hypothetical example
n Table 1 and Fig. 1, the favored decision threshold for the H metric
hould be H ≤ 7.
OC curve associated to the H metric. (b) ROC curve associated to the randomized H
ty corresponds to FPR. See Table 1 for calculations involved in the construction of

AUC statistics. Given the ROC curve for a classifier, the area under
the curve (AUC) measures its overall diagnostic performance. The
AUC is susceptible to several interpretations (Hanley and McNeil,
1982; DeLong et al., 1988; Obuchowski, 2003), namely (1) the aver-
age value of sensitivity for all possible values of specificity, and
vice versa, and (2) the probability that a randomly selected item
with perturbation has an index score that indicates greater sus-
picion than a randomly chosen item without perturbation. Some
very appealing properties of AUC are its independence on either
the prevalence of perturbed items or the cut points to form the
curve, and its equivalence to the Wilcoxon tests of ranks (Hanley
and McNeil, 1982). Since the AUC is a portion of the area of the
unit square, its value will always be between 0 and 1. However,
because random guessing is associated to the chance diagonal with
AUC = 0.5, no realistic classifier should have an AUC < 0.5 (Fawcett,
2005). The AUCs for the ROC curves of Fig. 1a and b are 0.92 and 0.60,
respectively. Then, what does AUC = 0.92 for the H metric mean? If
we compare the H values of two randomly selected streams each
one with different conservation labeling, the H value of the per-
turbed stream is expected to be lower than the opposite H score in
92% of the times.

The 95% confidence interval for the AUC can be calculated to
test random deviation from the null hypothesis of AUC = 0.5. If
the 0.5 value lies outside the confidence interval, then there is
evidence that the metric is able to distinguish between the two
groups of streams. When different diagnostic metrics are applied
on the same streams, their ROC curves may be also tested for
the statistical significance of the difference among their AUCs
scores (DeLong et al., 1988). See Hanley and McNeil (1982) and
Zweig and Campbell (1993) for details of calculations. ROC analyses
and graphics were performed using MedCalc for Windows, ver-
sion 9.6.4.0 (MedCalc Software, Mariakerke, Belgium, available at
http://www.medcalc.be) and R (R Development Core Team, 2009).

2.2. Study sites, establishing scenarios of perturbation and stream
quality indices

Southern Andean Yungas (Olson et al., 2001) is a narrow strip of

mountain rain forest, that extends on the eastern slope of the Andes,
stretching from southern Bolivia (23◦S) to northwestern Argentine
(29◦S). The region is characterized by a humid climate, with rainfall
exceeding 1500 mm per year concentrated in the summer period
(November–March). We have studied 95 streams (corresponding

http://www.medcalc.be/
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Fig. 3. Analytic pathway of ROC analysis applied on stream quality inference. Two
independent channels can be recognized, one determines the actual conservation
ig. 2. Study area with sampling points projected on it. Grey tones correspond to
egetation formations at Yungas Rainforest.

o 95 sampling sites) widely scattered over the region that have
een considered as belonging to a single lotic typology (Fig. 2).
ampled streams show steeped slopes, moderately to fast current
elocity, well oxygenated and temperate waters, with streambeds
ominated by boulders and cobbles. Presence/absence data about
enthic invertebrates were obtained via qualitative (kicknet and

ight trap) and quantitative (Surber 0.3 m × 0.3 m, 300 �) sampling
ethods with similar search efforts. We have identified 171 taxa

o species/morpho-species level (Ephemeroptera, Trichoptera, Ple-
optera, Megaloptera and the family Elmidae of Coleoptera) and
igher levels for the remaining taxa.

The true health status of streams was a priori determined in
unction of disturbance factors described below. Then, some biotic
ndices based on benthic assemblages were calculated. Finally, we
pplied ROC analysis over the metrics and obtained a graphical dis-
lay of their performance and an optimal cut point to distinguish
ealthy from impaired streams. The above steps can be articulated

nto a single analytic pathway (Fig. 3).
Perturbation was assessed based on the occurrence (or not) of

he following disturbance factors (up to 1 km upward the main flow

irection): logging (restricts to the riparian trees), cattle grassing,
hysical alteration of the stream bottom (canalization, vehicular
raffic passing over the streambed, and commercialization of peb-
les, cobbles and sand), recreational or domestic use of the stream
y local population, replacement of native forests by crops, and set-
level studying environmental descriptors and the other aims to predict that status
via a biotic index. ROC analysis assesses the diagnostic performance and helps to
define a cut-off to decide whether a given stream should be classified as impaired
or healthy.

tlement of factories that discharge effluents on the running waters.
Evidence was provided by field notes, aerial image interpretation
and literature (Fernández et al., 2001; Von Ellenrieder, 2007). The
variable here considered are inside the pool of criteria commonly
used to define reference sites (e.g., Sánchez-Montoya et al., 2009).
Four different scenarios of perturbation have been evaluated. In
the first scenario, the true health status of a given stream is classi-
fied as positive (perturbed) if only one disturbance factor has been
detected, in the second scenario a stream is classified as positive if
two factors have been detected, and so on. Note that this classifi-
cation depends only on the number of impacts disregarding their
intensity.

Six biotic indices (Table 3) were calculated. From that list, IBY-
4 (Yungas Biotic Index based on 4 taxa) is firstly proposed here. It
accounts for the occurrence of Elmidae, Plecoptera, Trichoptera
and Megaloptera. IBY-4 is independent of the richness and abun-
dance associated to each of these taxa. The domain of IBY-4 is thus
constrained to a set of five discrete states {0, 1, 2, 3, 4}. IBY-4 = 0
means that none of the four taxa has been detected along the sam-
pling site, IBY-4 = 1 means that only one of the four taxa has been
recorded, and so on. These four taxa have been selected because:
(1) they have shown good responses on separate ROC analyses per-
formed by the authors over the totality of available taxa; (2) they
are conspicuous elements of the Andean stream communities; (3)
they represent easily recognizable taxonomic levels, therefore they
are a convenient tool to assess stream quality in the field even for
parataxonomists.

3. Results

Thirty one streams did not exhibit any recognizable distur-
bance factors acting on them as they are mainly associated to
protected areas and were treated as reference sites. The frequency
of streams with 1, 2, 3 or 4 disturbance factors was 31, 10, 10
and 13, respectively. ROC curves enabled us to evaluate differ-
ent metrics and their responses for each scenario of perturbation
(Figs. 4 and 5). The first scenario was significantly solved by the

ASPT metric. The second scenario was discriminated by ASPT and
IBY-4. The third scenario was recognized through all indices except
Richness, and the last scenario was discriminated through all the
metrics. Table 4 displays the basics statistics of the ROC analy-
ses, including both AUC estimation (the general performance of
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ig. 4. Diagnostic performance of biotic indices in different scenarios of perturbation
orresponds to the presence/absence of one (a), two (b), three (c), or four (d) distur

he test) and information about cut points. The mean AUC scores
ay achieve an overall hierarchy of performance, where IBY-
> ASPT > ElPT > EPT > BMWP > Richness. In general terms, all the
etrics increased their performance as the lower bound of per-

urbation also increased from 1 to 4 (Fig. 5).
The performance of the optimal cut points for the different met-

ics can also be assessed. In Fig. 6 each point on the ROC space

epresents a sensitivity/specificity pair corresponding to a partic-
lar decision threshold. Different perturbation scenarios (closed
y parentheses) present some variations but in general ElPT and

BY-4 outperform the remaining indices. ROC curve methodology
lso permitted to estimate the cut-off values for each metric. We

able 3
etrics applied on real data to show ROC analysis.

Metrics Description

Richness Number of different kinds of o
at a given site.

BMWP (Biological Monitoring Working Party) Sum of the tolerance scores of
recognized in the sample (Arm

ASPT (Average Score Per Taxon) Total BMWP divided by the nu
(Walley and Hawkes, 1996).

EPT (Ephemeroptera–Plecoptera–Trichoptera) Number of species/morpho-sp
orders (Klemm et al., 1990).

ElPT (Elmidae–Plecoptera–Trichoptera) Number of species/morpho-sp
taxa.

IBY-4 (Yungas Biotic Index based on 4 taxa) It accounts for the occurrence
Plecoptera, Trichoptera and M
) ROC curves. Diagonal chance has been drawn. The response variable (perturbation)
factors. Sensitivity/specificity values are expressed in percentages.

found that the average decision thresholds to ascertain pertur-
bation are: IBY-4 ≤ 2, ASPT ≤ 6, ElPT ≤ 4, EPT ≤ 8, BMWP ≤ 66 and
Richness ≤ 14.

Despite the fact that ElPT and EPT are highly related indices,
the ROC curves of the former consistently dominated on almost
the entire specificity domain of the latter (Fig. 4). Fig. 7a displays
the separate performance for each taxa involved in these biotic

indices. Although Ephemeroptera seems not to be completely sat-
isfactory, a different picture is achieved when its main families are
analyzed separately (Fig. 7b). Baetidae and Caenidae do not differ
from a random guessing of stream quality, while Leptohyphidae
and Leptophlebiidae are better discriminators.

Observation

rganisms recorded The simplest estimation of biodiversity.

all families
itage et al., 1983).

We used scores adapted for the region by
Domínguez and Fernández (1998).

mber of scoring taxa Dependence on sample size is removed.

ecies within these Pollution sensitive taxa pooled into a single
measure.

ecies within these Von Ellenrieder (2007) prefers this index over
EPT for the region of interest.

of Elmidae,
egaloptera.

Contribution of this manuscript. See text for
explanation.
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Fig. 6. Single performance of the optimal cut points for the different metrics. Each
point on the ROC space represents a sensitivity/specificity pair corresponding to a
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ig. 5. AUC values under the three different scenarios of perturbation. Solid cir-
les: AUC significantly higher than random expectation. Empty circles: the null
ypothesis (AUC = 0.5) could not be rejected at a significance level of 0.05.

. Discussion

.1. Test comparisons

International standardization of methods is increasingly
equired around the world, for example in Europe by the Water
ramework Directive (Bloch, 1999), and ROC curve methodology
reatly outperforms previous methods used for the comparison
f test efficiency (i.e. accuracy). The percentage of correct diag-
oses in the entire sample can be simply computed but has several

imitations (Obuchowski, 2003): (1) its magnitude varies as the
revalence of disturbed sites varies in the sample, (2) it is calcu-

ated on the basis of only one cut point and (3) false-positive and
alse-negative results are treated as if they are equally undesirable.
OC curve analysis, instead, combines sensitivity and specificity
ithout creating a dependence on the prevalence of impacted sites.
urthermore, the ROC plot displays all possible cut points (or sensi-
ivity/specificity pairs) enabling a direct visual comparison of many
ests on a common set of scales.

Barbour et al. (1996) developed a framework to assess discrimi-
ation between impaired and unimpaired sites by stream biological

able 4
ummary statistics for the ROC curve analyses. Biotic indices are the classifiers and scen
, 2, 3 and 4 are based on the corresponding number of disturbance factors acting on th
aximal sum of ranks) throughout the scenarios. Scenarios with non-significant AUC v
− Spe = 1 − specificity.

Metric Scenario AUC Cut-off Se

IBY-4 1 0.499 – –
2 0.695 ≤2 0.
3 0.831 ≤2 0.
4 0.913 ≤2 0.

ASPT 1 0.640 ≤6.210 0.
2 0.702 ≤6.187 0.
3 0.752 ≤6 0.
4 0.800 ≤5 0.

ElPT 1 0.573 – –
2 0.598 – –
3 0.832 ≤4 0.
4 0.970 ≤4 0.

EPT 1 0.624 – –
2 0.566 – –
3 0.758 ≤8 0.
4 0.840 ≤7 0.

BMWP 1 0.574 – –
2 0.581 – –
3 0.681 ≤51 0.
4 0.818 ≤66 0.

Richness 1 0.616 – –
2 0.565 – –
3 0.652 – –
4 0.808 ≤14 0.
tracks indicate sensitivity/specificity pairs that are equidistant to the point (0, 1).
In general, metrics improve their performance (i.e., they are northwest) when the
minimal level of perturbation considered raises up. ElPT and IBY-4 outperform the
rest of indices.

metrics. These authors consider accuracy according to the degree of

interquartile overlap in paired box-and-whisker plots. This analytic
strategy is rather similar to the underlying logic of ROC analysis (i.e.
to compare two series of test scores based on the ordinal arrange-
ment of metric values). However, Barbour et al.’s approach does not
provide (1) guidelines to differentiate the discriminatory ability of

arios of perturbation correspond to the actual classification of streams. Scenarios
e streams. For each index the last column indicates the best cut-off (i.e., with the
alues show empty entries for cut-off, sensitivity and specificity. Sen = sensitivity,

nsitivity Specificity Mean AUC Best cut-off

– 0.735 ≤2
400 0.903
700 0.903
769 0.903
613 0.613 0.724 ≤6
700 0.613
700 0.710
615 0.968

– 0.707 ≤4
–

700 0.871
923 0.871

– 0.635 ≤8
–

700 0.710
769 0.807

– 0.627 ≤66
–

500 0.968
692 0.936

– 0.602 ≤14
–
–

615 0.968
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freshwater benthic macroinvertebrates for that region so that dis-
ig. 7. Differential diagnostic performance among taxa involved in the calculation
f ElPT and EPT metrics under the fourth scenario (most perturbed). (a) Individual
OC curves. (b) ROC curves associated to the main families of Ephemeroptera.

etrics belonging to the same category of accuracy, (2) thresh-
lds separating healthy from poor streams based on an optimality
riterion.

Another strategy for carrying out comparisons among methods
onsists of enumerating a list of attributes (or ideal criteria) that
n index should meet (Bonada et al., 2006). Preferred indices are
hose that fulfill the maximum number of these criteria. This kind of
ualitative evaluation is very different to the quantitative one dis-
ussed here, and is useful to determine the more suitable method
rior to the development of the monitoring effort or when a gold
tandard cannot be achieved by the available data for the study
egion.

Our findings show that ASPT outperformed all other metrics in
he first scenario (pristine vs. rivers with only 1 impact factor). So,
his metric is a useful tool for monitoring areas impacted by diffuse
actors (patchy landscapes with native forest, pastures and crops).
he use of any other of the metrics discussed here would fail in
etecting this impact on the aquatic community.

As expected, all the metrics increased their performance with
ncreasing perturbation. Noticeably, the AUC for Richness and other
ndices linked to richness (ElPT, EPT, BMWP) decreased (i.e. indices
how a lower discriminatory resolution) throughout the second
cenario (Fig. 5). This pattern accommodates to the intermediate
isturb hypothesis (Connell, 1978). Intermediate-level factors are

nown to increase diversity in many cases and the second scenario
ubsumes into this case. Moreover, the second scenario includes
ivers with some organic enrichment and/or other factors creating
patial heterogeneity.
dicators 11 (2011) 582–589

As proposed by Von Ellenrieder (2007) ElPT outperformed
EPT which is a phenomenon already suggested by Fossati et al.
(2001) who highlighted Elmidae strong responses to sediments
loads. In regard to EPT, the exclusion of some tolerant fami-
lies of Ephemeroptera (Baetidae, Caenidae) from EPT calculation
improved its effectiveness. For example Baptista et al. (2007)
discussed the metric Baetidae/Ephemeroptera that is expected
to increase in the presence of perturbation. This consideration
was also pointed out by Domínguez and Fernández (1998) in
adapting BMWP scores to the region (giving low sensitivity value
assigned to Baetidae). Thus, the conclusions about performance of
Ephemeroptera may be different depending on the taxonomical
level evaluated.

BMWP performed relatively well in the worst scenarios (with 3
and 4 impacts), but failed to determine low affected systems (with
1 or 2 impacts). This failure may be associated to the general score
allocation for each taxon which has to be adjusted to the region as
the knowledge about fauna pollution tolerance increases (Prat et al.,
2009). The ad hoc index IBY-4 showed high AUCs throughout the
different scenarios. Its extremely simple calculation only accounts
for the recognition of four higher taxa (Elmidae, Trichoptera, Ple-
coptera and Megaloptera) with relatively large body size and easily
identifiable. Presence/absence of these taxa is solely required to
obtain IBY-4 score, so morpho-species or species are not neces-
sary to be identified. These aspects make IBY-4 a powerful tool for
biomonitoring by non-taxonomists, and especially suitable for local
people to carry out a rapid assessment of the ecological stream
quality.

4.2. Cut-off values

Classic ROC methodology is concerned with variables of
dichotomous response, so cut-off values chosen via this tool sep-
arate two opposite categories: healthy versus impaired. However,
some metrics like BMWP are commonly used to discriminate more
than two categories of stream status conservation (e.g., pristine,
good, regular, bad). Our cut-off value for this metric (=66) dis-
tinguishes pristine + good from regular + bad streams. Nonetheless,
multi-class ROC analysis can be used to discriminate outcomes
associated to multiple underlying categories (Li and Fine, 2008).

An advantage of using ROC analysis in bioindication refers to
the estimation of cut-off values. Traditionally, cut-off values are
estimated through the comparison of metric values gathered from
impacted and polluted sites, in a rather circular reasoning. The
cut-off value for BMWP (≤66) is much higher than that proposed
originally for the region (≤40, Domínguez and Fernández, 1998). In
this particular case, the difference is due to a better knowledge
of the region (Fernández et al., 2006) with a larger sampling of
sites (95 vs. 17) and taxa (171 vs. 34) and the inclusion of streams
holding a biodiversity higher than those studied by Domínguez and
Fernández (1998).

The other commonly used metrics (ASPT ≤ 6, ElPT ≤ 4, EPT ≤ 8,
Richness ≤ 14) and the new IBY-4 (≤2), did not have a proposed
cut-off value, so the outcome obtained here are the first proposals.

4.3. Future research

The success in implementing biotic indices is subordinated
to the accuracy of the sensitivity scores assigned to individual
taxa. Thus, for example, Figueroa et al. (2007) working on Chilean
Mediterranean rivers propose to tune the tolerance values of
criminatory capabilities of biotic indices could be enhanced. A very
fertile field of research associated to ROC curves, not explored here,
is on the allocation of BMWP scores to taxa in an objective way. For
example in Fig. 7a, we can see that Elmidae clearly outperforms Per-
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idae (the single family of Plecoptera in the region) in discriminating
olluted sites, but Perlidae has the maximum BMWP score (10)
hereas Elmidae shows a low score (5) (Domínguez and Fernández,

998). Our results suggest that Elmidae should have a much higher
alue in the studied area.

We have considered different scenarios of perturbation
hroughout the paper which ranged from pristine to highly per-
urbed ones based on the number of occurring disturbance factors.
owever, study sites are exposed to different levels for each distur-
ance factor, so that weighting the impact of those factors would
e desirable. There is no gold standard to classify a given stream
s healthy or non-healthy; on the contrary, there is a continuous
tressor gradient in river ecosystems. We consider the ROC fuzzy
ethodology (Castanho et al., 2007) a valuable tool to address this

ssue as this approach considers outcome variables not only as
ichotomous but also as continuous ones.
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